337 research outputs found

    Complementary Speckle Patterns : deterministic interchange of intrinsic vortices and maxima through Scattering Media

    Full text link
    Intensity minima and maxima of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1\pm 1 to the impinging coherent beam. This transform arises from the intuitive expectation that a tightly focused beam is so-changed into a vortex beam and vice-versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor 3\sqrt{3}. A cyclic permutation of optical vortices and maxima is unexpectedly observed and discussed.Comment: 9 pages, 9 figure

    Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection

    Get PDF
    Recent advances in nanophotonics open the way for promising applications towards efficient single molecule fluorescence analysis. In this review, we discuss how photonic methods bring innovative solutions for two essential questions: how to detect a single molecule in a highly concentrated solution, and how to enhance the faint optical signal emitted per molecule? The focus is set primarily on the widely used technique of fluorescence correlation spectroscopy (FCS), yet the discussion can be extended to other single molecule detection methods

    Compressive Raman imaging with spatial frequency modulated illumination

    Full text link
    We report a line scanning imaging modality of compressive Raman technology with spatial frequency modulated illumination using a single pixel detector. We demonstrate the imaging and classification of three different chemical species at line scan rates of 40 Hz

    Filtering of matter symmetry properties by circularly polarized nonlinear optics

    No full text
    International audienceWe propose a direct readout of symmetry information in matter using nonlinear optics. From combinations of circularly and longitudinally polarized optical fields, we construct irreducible spherical field tensors for second- and third-order nonlinear processes. The coupling of these field tensors to the matter susceptibility tensors allows filtering out of the susceptibility symmetries independently of the sample orientation in the laboratory frame. Experimental demonstrations are conducted on microcrystals, in a microscopy configuration compatible with symmetry order imaging

    Ultra-thin rigid endoscope: Two-photon imaging through a graded-index multi-mode fiber

    Full text link
    Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 microns. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible. We validate the ultra-thin rigid endoscope consisting of a few cm of graded-index multi-mode fiber by using it to acquire optically sectioned two-photon fluorescence endoscopic images of three-dimensional samples.Comment: 17 pages, 15 figures, submitted to Opt. Expres
    corecore